Failure Analysis of Leakage of Reducer Pipe in Natural Gas Treatment Plant

FENG Jinsong, ZHAO Xinkui, LI Guangshan, XIONG Xinmin, WU Donghui, CHEN Qingguo, CHANG Zeliang, ZHANG Shuxin, LAI Weiya

Equipment Environmental Engineering ›› 2025, Vol. 22 ›› Issue (12) : 103-110.

PDF(2498 KB)
PDF(2498 KB)
Equipment Environmental Engineering ›› 2025, Vol. 22 ›› Issue (12) : 103-110. DOI: 10.7643/ issn.1672-9242.2025.12.013
Key Projects Equipment

Failure Analysis of Leakage of Reducer Pipe in Natural Gas Treatment Plant

  • FENG Jinsong1,2,3,4, ZHAO Xinkui1,2,3,4, LI Guangshan5,6, XIONG Xinmin1,2,3,4, WU Donghui1,2,3,4, CHEN Qingguo1,2,3,4, CHANG Zeliang1,2,3,4, ZHANG Shuxin5,6, LAI Weiya5,6
Author information +
History +

Abstract

The work aims to determine the cause of the cracking and leakage failure of a reducer pipe in a natural gas processing plant by physical and chemical tests and analyses of the pipe fitting. Macroscopic observation, chemical composition analysis, metallographic structure observation, mechanical property testing, scanning electron microscopy (SEM) analysis of fracture and crack morphology, and energy dispersive spectroscopy (EDS) detection were employed. The chemical composition and mechanical properties of the pipe fitting met the national standards. The reducer pipe was in service in an acidic wet gas environment containing H2S, CO2 and H2O. There were residual stresses in the transition section, and the L360NB material was sensitive to stress corrosion cracking. These factors jointly led to the cracking. Comprehensive macroscopic, microscopic and EDS analyses indicated that the crack originated from the inner wall of the transition section. There were secondary cracks on both sides of the main crack, and the crack propagation was mainly intergranular with local transgranular propagation. The failure mechanism of the reducer pipe was wet hydrogen sulfide stress corrosion cracking. Similar pipe fittings should be inspected, and anti-sulfur materials should be selected and SSCevaluation should be conducted before use to determine their applicability under acidic conditions. Meanwhile, in-service inspection and risk assessment should be carried out for in-service pipe fittings.

Key words

reducer pipe / natural gas / hydrogen sulfide / residual stress / hydrogen sulfide stress corrosion cracking / failure analysis

Cite this article

Download Citations
FENG Jinsong, ZHAO Xinkui, LI Guangshan, XIONG Xinmin, WU Donghui, CHEN Qingguo, CHANG Zeliang, ZHANG Shuxin, LAI Weiya. Failure Analysis of Leakage of Reducer Pipe in Natural Gas Treatment Plant[J]. Equipment Environmental Engineering. 2025, 22(12): 103-110 https://doi.org/10.7643/ issn.1672-9242.2025.12.013

References

[1] 张春元. 含硫天然气集输管道材料选择技术探讨[J]. 油气田地面工程, 2022, 41(10): 81-84.
ZHANG C Y.Discussion on Material Selection Technology of Sulfur-Containing Natural Gas Gathering and Transmission Pipeline[J]. Oil-Gas Field Surface Engineering, 2022, 41(10): 81-84.
[2] 黎洪珍, 梁兵, 方进, 等. 含硫天然气输送管道选材分析与建议[C]//2015年全国天然气学术年会论文集. 武汉: 中国石油学会, 2015.
LI H Z, LIANG B, FANG J, et al.Analysis and Suggestions on Material Selection for Sulfur-Containing Natural Gas Transmission Pipelines[C]//Proceedings of 2015 National Natural Gas Academic Annual Conference. Wuhan: Natural Gas Committee of Chinese Petroleum Society, 2015.
[3] 乔莎莎, 于广军, 施亚汝. 碳钢及低合金钢石化设备在湿H2S环境下的腐蚀机理与选材[J]. 化工装备技术, 2023, 44(4): 46-50.
QIAO S S, YU G J, SHI Y R.Corrosion Mechanism and Material Selection of Carbon Steel and Low Alloy Steel Petrochemical Equipment in Wet H2S Environment[J]. Chemical Equipment Technology, 2023, 44(4): 46-50.
[4] 王健, 申得济, 武丹峰, 等. 某海上平台硫化氢应力腐蚀开裂及氢致开裂腐蚀敏感性分析[J]. 全面腐蚀控制, 2024, 38(3): 113-117.
WANG J, SHEN D J, WU D F, et al.Risk Analysis of Hydrogen Sulfide Corrosion in a Pressure Vessel on an Offshore Platform[J]. Total Corrosion Control, 2024, 38(3): 113-117.
[5] 曹裕喜, 宗瑞磊, 张迎恺. 碳钢空冷器管子管板焊接接头湿硫化氢应力腐蚀开裂研究[J]. 石油化工设备技术, 2023, 44(3): 41-44.
CAO Y X, ZONG R L, ZHANG Y K.On Stress Corrosion Cracking of Tube End Welded Joints for Carbon Steel air-Cooled Heat Exchanger in Wet H2S Service[J]. Petrochemical Equipment Technology, 2023, 44(3): 41-44.
[6] 王峰, 高梦杰. 湿硫化氢环境HSLA钢焊接接头应力腐蚀开裂的研究进展[J]. 材料保护, 2023, 56(1): 153-162.
WANG F, GAO M J.Research Progress of Stress Corrosion Cracking of HSLA Steel Welded Joints in Wet H2S Environment[J]. Materials Protection, 2023, 56(1): 153-162.
[7] 何生厚. 高含硫化氢和二氧化碳天然气田开发工程技术[M]. 北京: 中国石化出版社, 2008.
HE S H.Engineering Technology for the Development of High-Sulfur Hydrogen Sulfide and Carbon Dioxide Containing Natural Gas Fields[M]. Beijing: China Petrochemical Press, 2008.
[8] 蒋毅, 蒋洪, 朱聪, 等. 高含硫气田集输管道材质的选择[J]. 油气储运, 2006, 25(12): 43-45.
JIANG Y, JIANG H, ZHU C, et al.The Choice Material of Gathering Pipeline in Acid Gas Field[J]. Oil & Gas Storage and Transportation, 2006, 25(12): 43-45.
[9] 焦士杰, 罗敬兵, 纪淑玲, 等. 柴达木盆地英中地区含硫化氢服役环境下的油管腐蚀开裂行为研究[J]. 石油管材与仪器, 2021, 7(6): 47-50.
JIAO S J, LUO J B, JI S L, et al.Corrosion Cracking Behavior of Tubing in Environment Containing Hydrogen Sulfide in Yingzhong Area of Qaidam Basin[J]. Petroleum Tubular Goods & Instruments, 2021, 7(6): 47-50.
[10] 马团校. 硫化氢腐蚀与防护[J]. 全面腐蚀控制, 2021, 35(1): 91-93.
MA T X.Hydrogen Sulfide Corrosion and Protection[J]. Total Corrosion Control, 2021, 35(1): 91-93.
[11] 梁中红, 李怡, 袁银春, 等. L360QS管线钢环焊缝在湿硫化氢中损伤行为的研究[J]. 热加工工艺, 2025, 54(12): 155-160.
LIANG Z H, LI Y, YUAN Y C, et al.Study on Damage Behaviour of L360QS Pipeline Steel Girth Welds in Wet Hydrogen Sulphide[J]. Hot Working Technology, 2025, 54(12): 155-160.
[12] 李维锋, 陈欣, 徐祥娟, 等. 碳钢焊接接头硫化氢应力腐蚀开裂标准对比研究[J]. 石油和化工设备, 2024, 27(9): 211-214.
LI W F, CHEN X, XU X J, et al.Comparative Study on Sulfide Stress Corrosion Cracking Standards for Carbon Steel Welded Joints[J]. Petro & Chemical Equipment, 2024, 27(9): 211-214.
[13] 郭建军, 杨毅, 佘郡平, 等. 酸性油气介质输送管道管材选择优化研究[J]. 广州化工, 2015, 43(11): 165-167.
GUO J J, YANG Y, SHE J P, et al.Study on Optimization of Material of Transportation System of High Sour Gas Field[J]. Guangzhou Chemical Industry, 2015, 43(11): 165-167.
[14] 王澎. H2S对天然气处理设备的腐蚀及相应对策[J]. 天然气与石油, 2010, 28(2): 34-36.
WANG P.Corrosion of H2S on Natural Gas Processing Equipment and Corresponding Countermeasures[J]. Natural Gas and Oil, 2010, 28(2): 34-36.
[15] 邢希金. 我国海上油井管腐蚀与防护研究进展[J]. 装备环境工程, 2021, 18(1): 1-7.
XING X J.Research Progress on Corrosion and Corrosion Protection of Offshore Oil Well Tubing in China[J]. Equipment Environmental Engineering, 2021, 18(1): 1-7.
[16] 付安庆, 任越飞, 来维亚, 等. 天然气管路导气球阀失效分析[J]. 装备环境工程, 2017, 14(12): 8-13.
FU A Q, REN Y F, LAI W Y, et al.Failure Analysis on Deflated Ball Valve of Natural Gas Pipeline[J]. Equipment Environmental Engineering, 2017, 14(12): 8-13.
[17] 姜海一, 李智慧, 王金庆, 等. 天然气处理厂分离器开裂原因分析[J]. 石油化工设备, 2012, 41(4): 98-101.
JIANG H Y, LI Z H, WANG J Q, et al.Failure Analysis of Separator in Natural Gas Processing Plant[J]. Petro-Chemical Equipment, 2012, 41(4): 98-101.
[18] 夏明明, 梁晓飞, 黄强, 等. 某输气管线弯管开裂原因分析[J]. 全面腐蚀控制, 2022, 36(2): 40-45.
XIA M M, LIANG X F, HUANG Q, et al.Analysis on the Cracking of the Elbow of a Gas Pipeline[J]. Total Corrosion Control, 2022, 36(2): 40-45.
[19] 刘明, 王毅. 高含硫气田集输管线腐蚀因素分析[J]. 管道技术与设备, 2011(4): 43-45.
LIU M, WANG Y.Corrosion Factor Research of Gas Pipeline in Gas Field Containing Sulfur[J]. Pipeline Technique and Equipment, 2011(4): 43-45.
[20] 陈明, 崔琦. 硫化氢腐蚀机理和防护的研究现状及进展[J]. 石油工程建设, 2010, 36(5): 1-5.
CHEN M, CUI Q.Current Research Status and Progress of H2S Corrosion Mechanism and Prevention[J]. Petroleum Engineering Construction, 2010, 36(5): 1-5.
[21] 刘雄伟, 李芳, 龙武, 等. P110油管应力腐蚀开裂失效的原因[J]. 腐蚀与防护, 2024, 45(7): 108-113.
LIU X W, LI F, LONG W, et al.Reasons for Stress Corrosion Cracking Failure of P110 Tubing[J]. Corrosion & Protection, 2024, 45(7): 108-113.
[22] 幸雪松, 邢希金, 张俊莹, 等. 渤海油田中深层低含H2S气井油套管选材研究[J]. 装备环境工程, 2021, 18(1): 50-56.
XING X S, XING X J, ZHANG J Y, et al.Study on Tubing and Casing Material Selected for Low H2S Gas Well in Middle-Deep Layers of Bohai Oilfield[J]. Equipment Environmental Engineering, 2021, 18(1): 50-56.
[23] 国家发展和改革委员会. 天然气地面设施抗硫化物应力开裂金属材料要求: SY/T 0599—2006[S]. 北京: 石油工业出版社, 2006.
National Development and Reform Commission. Requirements for Metal Materials for Anti-Sulfide Stress Cracking of Gas Field Facilities: SY/T 0599—2006[S]. Beijing: Petroleum Industry Press, 2006.
[24] 田鸣, 崔永兴, 黄倩, 等. 某单井输气用修复油管开裂失效分析[J]. 装备环境工程, 2025, 22(1): 178-185.
TIAN M, CUI Y X, HUANG Q, et al.Cracking Failure Analysis of Repaired Oil Pipeline in a Gas Well[J]. Equipment Environmental Engineering, 2025, 22(1): 178-185.
[25] 李慧. 浅谈基于湿硫化氢应力腐蚀的压力容器设计和制造[J]. 中国设备工程, 2023(14): 73-75.
LI H.A Brief Discussion on the Design and Manufacturing of Pressure Vessels Based on Wet Hydrogen Sulfide Stress Corrosion[J]. China Plant Engineering, 2023(14): 73-75.
[26] 赵军. 湿硫化氢环境下小浮头螺栓失效原因分析[J]. 石油化工技术与经济, 2021, 37(3): 54-57.
ZHAO J.Failure Analysis of Small Floating Head Bolts in Wet Hydrogen Sulfide Environment[J]. Technology & Economics in Petrochemicals, 2021, 37(3): 54-57.
[27] 李呐, 李晨光, 汤智涛, 等. 抗H2S腐蚀管线管的开发[J]. 钢管, 2005, 34(5): 13-17.
LI N, LI C G, TANG Z T, et al.Development of Anti-H2S Corrosion Linepipe[J]. Steel Pipe, 2005, 34(5): 13-17.
[28] 刘恩泽. L245~390系列抗H2S腐蚀管线钢生产工艺研究[D]. 包头: 内蒙古科技大学, 2019.
LIU E Z.Research on the Production Process of L245-390 Series Anti-H2S Corrosion Pipeline Steel[D]. Baotou: Inner Mongolia University of Science & Technology, 2019.
PDF(2498 KB)

Accesses

Citation

Detail

Sections
Recommended

/